
عنوان جعبه متن
بهطوریکلّی یک عملکرد ترانسفورماتور بر دو اصل استوار است:
جریان الکتریکی متناوب میتواند میدان مغناطیسی متغیر پدیدآورد.
میدان مغناطیسی متغیر در یک سیمپیچ میتواند موجب به وجود آمدن جریان الکتریکی متناوب در یک سیمپیچ دیگر شود.
سادهترین طراحی برای یک ترانسفورماتور در شکل ۲ آمدهاست. جریان سیمپیچ اولیه موجب بهوجود آمدن یک میدان مغناطیسی میگردد. هر دو سیمپیچ اولیه و ثانویه روی یک هسته که دارای خاصیت نفوذپذیری مغناطیسی بالایی است (مانند آهن) پیچیده شدهاند. بالا بودن نفوذپذیری مغناطیسی هسته موجب میشود تا بیشتر میدان تولیدشده توسط سیمپیچ اولیه از داخل هسته عبور کرده و به سیمپیچ ثانویه برسَد.
قانون القا
میزان ولتاژ القاء شده در سیمپیچ ثانویه را میتوان به وسیله قانون فارادی بهدستآورد:
V S = N S d Φ d t {\displaystyle V_{S}=N_{S}{\frac {d\Phi }{dt}}} V_{S} = N_{S} \frac{d\Phi}{dt}
در فرمول بالا، VS ولتاژ لحظهای، NS تعداد دورهای سیمپیچ در ثانویه و Φ برابر مجموع شار مغناطیسی است که از یک دور سیمپیچ میگذرد. با توجه به این معادله تا زمانی که شار درحال تغییر از دو سیم پیچ اولیه و ثانویه عبور کند، ولتاژ لحظهای اولیه یک ترانسفورماتور ایدئال از معادله زیر بهدست میآید:
V P = N P d Φ d t {\displaystyle V_{P}=N_{P}{\frac {d\Phi }{dt}}} V_{P} = N_{P} \frac{d\Phi}{dt}
و با توجه به تعداد دور سیمپیچهای اولیه و ثانویه و این معادله ساده میتوان میزان ولتاژ القایی ثانویه را بهدستآورد:
V S V P = N S N P {\displaystyle {\frac {V_{S}}{V_{P}}}={\frac {N_{S}}{N_{P}}}} \frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}
شکل۲: یک ترانسفورماتور کاهندهٔ آرمانی و مسیر عبور شار در هسته
معادله توان
اگر سیمپیچ ثانویه یکبار متصل شده باشد، جریان در سیمپیچ ثانویه جاری خواهد شد و بهاین ترتیب توان الکتریکی بین دو سیمپیچ منتقل میشود. اگر ترانسفورماتور ایدئال بدون تلفات کار کند و تمام توانی که به ورودی وارد میشود، به خروجی برسد و به این ترتیب توان ورودی و خروجی برابر شود، در این حالت داریم:
P i n c o m i n g = I P V P = I S V S = P o u t g o i n g {\displaystyle P_{\mathrm {incoming} }=I_{P}V_{P}=I_{S}V_{S}=P_{\mathrm {outgoing} }} {\displaystyle P_{\mathrm {incoming} }=I_{P}V_{P}=I_{S}V_{S}=P_{\mathrm {outgoing} }}
و همچنین در حالت ایدهآل خواهیم داشت:
V S V P = N S N P = I P I S {\displaystyle {\frac {V_{S}}{V_{P}}}={\frac {N_{S}}{N_{P}}}={\frac {I_{P}}{I_{S}}}} \frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}} = \frac{I_{P}}{I_{S}}
بنابراین، اگر ولتاژ ثانویه از اولیه بزرگتر باشد، جریان ثانویه بههمان نسبت از جریان اولیه باید کوچکتر باشد. در واقع، همانطور که در بالا اشاره شد، بیشتر ترانسفورماتورها بازدهٔ بسیار بالایی دارند و بهاین ترتیب نتایج بهدست آمده از این معادلات به مقادیر واقعی بسیار نزدیک خواهد بود.
مباحث فنی
تعاریف سادهشده در بالا بسیاری از مباحث پیچیده دربارهٔ ترانسفورماتورها را در نظر نمیگیرد.
در یک ترانسفورماتور ایده ال، ترانسفورماتور دارای یک هسته بدون مقاومت مغناطیسی و دو سیمپیچ بدون مقاومت الکتریکی است. زمانی که ولتاژ به ورودیهای اولیه ترانسفورماتور اعمال میشود، برای بهوجود آوردن شار در مدار مغناطیسی هسته باید جریانی کوچکی در سیمپیچ اولیه جاری شود. از آنجایی که در ترانسفورماتور ایدهآل هسته فاقد مقاومت مغناطیسی است، این جریان قابل چشمپوشی خواهد بود و این در حالی که در یک ترانسفورماتور واقعی این جریان بخشی از تلفات ترانسفورماتور را تشکیل خواهد داد.
ملاحظات عملی
شار نشتی
در یک ترانسفورماتور ایده ال شار مغناطیسی تولید شده توسط سیمپیچ اول بهطور کامل توسط سیمپیچ دوم جذب میشود اما در واقع بخشی از شار مغناطیسی در فضای اطراف پراکنده میشود (نشت میکند). به شاری که در حین انتقال از مسیر خود جدا میشود شار نشتی (Leakage Flux) میگویند. این شار نشتی موجب به وجود آمدن اثر خود القا در سیمپیچها میشود و به این ترتیب موجب میشود که در هر سیکل، انرژی در سیمپیچ ذخیره شده و در نیمه پایانی سیکل آزاد شود. این اثر بهطور مستقیم باعث ایجاد افت توان نخواهد شد اما به دلیل ایجاد اختلاف فاز موجب ایجاد مشکلاتی در تنظیم ولتاژ خواهد شد و به این ترتیب باعث خواهد شد تا ولتاژ ثانویه دقیقاً نسبت واقعی خود با ولتاژ اولیه حفظ نکند؛ این اثر به ویژه در بارهای بزرگ خود را نشان خواهد داد. به همین دلیل ترانسفورماتورهای توزیع طوری ساخته میشوند تا کمترین میزان تلفات نشتی را داشته باشند.
با این حال در برخی کاربردها، وجود تلفات نشتی زیاد، مزیت بهشمار میرود. در این ترانسفورماتورها با استفاده از روشهایی مانند ایجاد مسیرهای مغناطیسی طولانی، شکافهای هوایی یا مسیرهای فرعی مغناطیسی اقدام به افزایش شار نشتی میکنند. دلیل افزایش عمدی تلفات پراکندگی در این ترانسفورماتورها قابلیت بالای این نوع ترانسفورماتورها در تحمل اتصال کوتاه است. از اینگونه ترانسفورماتورها برای تغذیه بارهای دارای مقاومت منفی مانند دستگاههای جوش (یا دیگر تجهیزات استفادهکننده از قوس الکتریکی)، لامپهای بخار جیوه و تابلوهای نئون یا ایجاد ایمنی در بارهایی که احتمال بروز اتصال کوتاه در آنها زیاد است استفاده میشود.
تأثیر بسامد
مشتق زمان در قانون القای فارادی نشان میدهد که شار در یک سیمپیچ، برابر انتگرال ولتاژ ورودی است. در یک ترانسفورماتور ایدئال افزایش شار در سیمپیچ بهطور خطی در نظر گرفته میشود اما در عمل شار مغناطیسی با سرعت نسبتاً زیاد افزایش پیدا میکند این افزایش تا جایی ادامه دارد که شار به نقطه اشباع مغناطیسی هسته میرسد. به خاطر افزایش ناگهانی جریان مغناطیسکننده در یک ترانسفورماتور واقعی، همه ترانسفورماتورها باید همیشه با جریان متناوب سینوسی (نه پالسی) تغذیه شوند.
معادله عمومی EMF برای ترانسفورماتورها[۲]
اگر شار مغناطیسی را سینوسی در نظر بگیریم رابطه بین ولتاژ E، بسامد منبع f، تعداد دور N، سطح مقطع هسته A و ماکزیمم چگالی مغناطیسی B از رابطه عمومی EMF و به صورت زیر به دست میآید:
E = 2 π f N A B 2 = 4.44 f N A B {\displaystyle E={\frac {2\pi fNAB}{\sqrt {2}}}\!=4.44fNAB} {\displaystyle E={\frac {2\pi fNAB}{\sqrt {2}}}\!=4.44fNAB}
برای یک ترانسفورماتور در چگالی مغناطیسی ثابت، EMF با افزایش بسامد افزایش مییابد که تأثیر آن را میتوان از معادله عمومی EMF محاسبه کرد؛ بنابراین با استفاده از ترانسفورماتورها در بسامد بالاتر میتوان بهرهوری آنها را نسبت به وزنشان افزایش داد چراکه یک ترانسفورماتور با حجم هسته ثابت در بسامد بالاتر میتواند میزان توان بیشتری را بین سیمپیچها جابجا کند و تعداد دور سیمپیچ کمتری نیز برای ایجاد یک امپدانس ثابت نیاز خواهد بود. با این حال افزایش بسامد میتواند موجب به وجود آمدن تلفات مضاعف مانند تلفات هسته و اثر سطحی در سیستم شود. در هواپیماها و برخی تجهیزات نظامی از بسامد ۴۰۰ هرتز استفاده میشود چرا که با این کار گذشته از افزایش برخی تلفات میتوان حجم تجهیزات را کاهش داد.
بهطور کلی استفاده از یک ترانسفورماتور در ولتاژ نامی ولی بسامد بیش از نامی موجب کاهش جریان مغناطیسکننده میشود و به این ترتیب در بسامدی کمتر از بسامد نامی جریان مغناطیسکننده میتواند در حد زیادی افزایش یابد. البته استفاده از ترانسفورماتورها در بسامدهای بیشتر یا کمتر از بسامد نامی باید قبل از اقدام، مورد ارزیابی قرار گیرد تا شرایط ایمن برای کار ترانس مثل سنجش ولتاژها، تلفات و استفاده از سیستم خنککننده خاص بررسی شود. برای مثال ترانسفورماتورها باید به وسیله رلههای کنترل محافظتی ولتاژ به ازای بسامد مجهز شوند تا در مقابل اضافه ولتاژهای ناشی از افزایش بسامد محافظت شوند.
تلفات توان
یک ترانسفورماتور ایدهآل هیچ تلفاتی نخواهد داشت و در واقع بازدهی برابر ۱۰۰٪ دارد. با این حال ترانسفورماتورهای واقعی نیز جزو بهرهورترین تجهیزات الکتریکی محسوب میشود بهطوریکه نمونههای آزمایشی ترانسفورماتورهایی که با بهرهگیری از ابر رسانا ساخته شدهاند به بازدهی برابر ۹۹٫۸۵٪ دست یافتهاند. بهطور کلی ترانسفورماتورهای بزرگتر از بازده بالاتری برخوردارند و ترانسفورماتورهایی که برای مصارف توزیعی مورد استفاده قرار میگیرند از بازدهی در حدود ۹۵٪ برخوردارند در حالی که ترانسفورماتورهای کوچک مانند ترانسفورماتورهای موجود در آداپتورها بازدهی در حدود ۸۵٪ دارند. تلفات به وجود آمده در ترانسفورماتور با توجه به عوامل به وجود آورنده یا محل اتلاف انرژی به این صورت طبقهبندی میشوند:
مقاومت سیمپیچها
جریانی که در یک هادی جاری میشود با توجه به میزان مقاومت الکتریکی هادی میتواند موجب به وجود آمدن حرارت در محل عبور جریان شود. در بسامدهای بالاتر اثر سطحی و اثر مجاورت نیز میتوانند تلفات مضاعفی را در ترانسفورماتور به وجود آورند.
تلفات پسماند (هیسترزیس)
هر بار که جهت جریان الکتریکی به دلیل متناوب بودن تغییر علامت میدهد، با توجه به جنس هسته، مقدار کمی انرژی در هسته باقی میماند. به این ترتیب برای یک هسته با جنس ثابت این نوع تلفات با میزان بسامد تناسب دارد و با افزایش بسامد تلفات پسماند هسته نیز افزایش مییابد.
جریان گردابی (فوکو)
شکل۳- یک ترانسفورماتور ایدئال به عنوان المانی در مدار
مواد فِرّومغناطیسی معمولاً هادیهای الکتریکی خوبی نیز هستند و بنابراین هسته ترانسفورماتور میتواند مانند یک مدار اتصال کوتاه شده عمل کند؛ بنابراین حتی با القای میزان کمی ولتاژ، جریان در هسته به شدت بالا میرود. این جریان جاری در هسته گذشته از به وجود آوردن تلفات الکتریکی موجب به وجود آمدن حرارت در هسته نیز میشود. جریان گردابی در هسته با مجذور بسامد منبع رابطه مستقیم و با مجذور ضخامت ورق هسته رابطه معکوس دارد. برای کاهش تلفات گردابی در هسته، هستهها را ورقه ورقه کرده و آنها را نسبت به یکدیگر عایق میکنند. اساس کار کورههای القایی، جریانهای گردابی است.
تغییر شکل بر اثر میدان مغناطیسی
شار مغناطیسی در یک ماده فِرّومغناطیس موجب حرکت نسبی ورقههای هادی نسبت به یکدیگر میشود. در صورت محکم نبودن این ورقهها این اثر میتواند موجب ایجاد صدایی شبیه وز وز در هنگام کار کردن ترانسفورماتور شود به این اثر تغییر شکل بر اثر میدان مغناطیسی یا Magnetostriction میگویند. این اثر میتواند موجب به وجود آمدن گرما در اثر اصطکاک بین صفحات نیز شود.
تلفات مکانیکی
به دلیل وجود تغییر شکل بر اثر مغناطیس در یک ترانسفورماتور بین قطعات ترانسفورماتور نوعی حرکت به وجود میآید این نیز به نوبه خود موجب به وجود آمدن تلفات مکانیکی در ترانسفورماتور خواهد شد. در صورتی که قطعات موجود در ترانسفورماتور به خوبی در جای خود محکم نشده باشند، تحرکات مکانیکی آنها نیز افزایش یافته و در نتیجه تلفات مکانیکی نیز افزایش خواهد یافت.
مدار معادل
شکل۴- مدار معادل یک تراسنفورماتور
محدودیتهای فیزیکی یک ترانسفورماتور واقعی به صورت یک مدار نمایش داده میشوند. این مدار معادل از تعدادی از عوامل به وجود آورنده تلفات یا محدودیتها و یک ترانسفورماتور ایدهآل تشکیل شدهاست. تلفات توان در سیمپیچ یک ترانسفورماتور بهطور خطی تابعی از جریان هستند و به راحتی میتواند آنها را به صورت مقاومتهایی سری با سیمپیچهای ترانسفورماتور نمایش داده شود؛ این مقاومتها RS و RP هستند. با بررسی خواص شار پراکندگی میتوان آن را به صورت خود القاهای XP و XS نشان داد که به صورت سری با سیمپیچ ایدئال قرار میگیرند. تلفات آهنی از دو نوع تلفات گردابی (فوکو) و پسماند (هیسترزیس) تشکیل شده. در بسامد ثابت این تلفات با مجذور شار هسته نسبت مستقیم دارند و از آنجایی که شار هسته نیز تقریباً با ولتاژ ورودی نسبت مستقیم دارد این تلفات را میتوان به صورت مقاومتی موازی با مدار ترانسفورماتور نشان داد. این مقاومت همان RC است.
هستهایی با نفوذپذیری محدود نیازمند جریان IM خواهد بود تا همچنان شار مغناطیسی را در هسته برقرار کند؛ بنابراین تغییرات در جریان مغناطیسکننده با تغییرات در شار مغناطیسی هم فاز خواهد بود و به دلیل اشباع پذیر بودن هسته، رابطه بین این دو خطی نخواهد بود. با این حال برای ساده کردن این تأثیرات در بیشتر مدارهای معادل این رابطه خطی در نظر گرفته میشود. در منابع سینوسی شار مغناطیسی ۹۰ درجه از ولتاژ القایی عقبتر خواهد بود، بنابراین این اثر را میتوان با القاگر XM در مدار نشان داد که بهطور موازی با تلفات آهنی هسته RC قرار میگیرد. RC و XM را در برخی موارد با هم به صورت یک شاخه در نظر میگیرند و آن را شاخه مغناطیسکننده مینامند. اگر سیمپیچ ثانویه ترانسفورماتور را مدار باز کنیم تمامی جریان عبوری از اولیه ترانسفورماتور جریان I0 خواهد بود که از شاخه مغناطیسکننده عبور خواهد کرد این جریان را جریان بیباری نیز مینامند.
مقاومتهای موجود در طرف ثانویه یعنی RS و XS نیز باید به طرف اولیه منتقل شوند. این مقاومتها در واقع معادل تلفات مسی و پراکندگی در طرف ثانویه هستند و به صورت سری با سیم پیچ ثانویه قرار میگیرند.
مدار معادل حاصل را مدار معادل دقیق مینامند گرچه در این مدار معادل نیز از برخی ملاحظات پیچیده مانند اثرات غیرخطی چشم پوشی میکند.
برچسبها:
اکتیو پارت ترانسفورماتورترانسفورماتور روغنیلیست قیمت ترانسفورماتورترانس کم تلفاتگارانتی محصولABترانسفورماتور هرمتیک-ترانسفورماتورقدرتتجهیزات ولوازم جانبی ترانسفورماتورراه اندازی ترانسفورماتورهاتست ترانسفورماتورگروه ایران ترانسفوترانسفورماتور خشکترانسفورماتور جریان بوشینگیترانسفورماتور توزیعشرکت بازرگانی ایران ترانسفوخدمات پس از فروش ایران ترانسفوترانسفورماتور نو وکارکردهترانسفورماتور دست دوم